Elastiset materiaalit, ominaisuudet ja esimerkit
joustavat materiaalit ovat materiaalit, joilla on kyky vastustaa vääristävää tai vääristävää vaikutusta tai voimaa ja palata sitten alkuperäiseen muotoonsa ja kokoonsa, kun sama voima poistetaan.
Lineaarista elastisuutta käytetään laajalti rakenteiden, kuten palkkien, levyjen ja levyjen suunnittelussa ja analysoinnissa.
Joustavilla materiaaleilla on suuri merkitys yhteiskunnalle, koska monia niistä käytetään vaatteiden, renkaiden, autonosien jne. Valmistukseen..
Joustavien materiaalien ominaisuudet
Kun elastinen materiaali on muotoiltu ulkoisella voimalla, siinä on sisäinen vastus muodonmuutokselle ja palautetaan se alkuperäiseen tilaansa, jos ulkoista voimaa ei enää käytetä.
Jossain määrin useimmilla kiinteillä materiaaleilla on elastinen käyttäytyminen, mutta voiman ja siihen liittyvän muodonmuutoksen suuruus on tässä elastisessa elpymisessä rajoitettu..
Materiaalia pidetään elastisena, jos se voidaan venyttää jopa 300%: iin alkuperäisestä pituudestaan.
Tästä syystä on olemassa joustava raja, joka on suurin lujuus tai jännitys kiinteän materiaalin pinta-alaa kohti, joka kestää pysyvän muodonmuutoksen.
Näiden materiaalien joustavuusraja merkitsee sen elastisen käyttäytymisen loppua ja sen muovikäyttäytymisen alkua. Heikoimmille materiaaleille sen elastisuusrajan rasitus tai jännitys aiheuttaa sen murtuman.
Saantoarvo riippuu tarkasteltavan kiinteän aineen tyypistä. Esimerkiksi metallitanko voidaan venyttää joustavasti jopa 1%: iin alkuperäisestä pituudestaan.
Tiettyjen kumimateriaalien fragmenteissa voi kuitenkin esiintyä pidennyksiä jopa 1000%. Useimpien ainesosien elastiset ominaisuudet yleensä putoavat näiden kahden äärimmäisyyden väliin.
Ehkä saatat olla kiinnostunut Miten venytysmateriaali syntetisoidaan?
Elastisten materiaalien tyypit
Elastisten materiaalien mallit Cauchy
Fysiikassa Cauchy-elastinen materiaali on sellainen, jossa kunkin pisteen jännitys / jännitys määräytyy vain senhetkisen muodonmuutoksen suhteen mielivaltaisen referenssikokoonpanon suhteen. Tätä materiaalia kutsutaan myös yksinkertaiseksi elastiseksi materiaaliksi.
Tästä määritelmästä alkaen yksinkertaisen elastisen materiaalin kireys ei riipu muodonmuutosreitistä, muodonmuutoksen historiasta tai sen muodonmuutoksen aikaansaamisesta..
Tämä määritelmä viittaa myös siihen, että konstitutiiviset yhtälöt ovat paikallisesti paikallisia. Tämä tarkoittaa, että stressiä vaikuttaa vain muodonmuutoksen tila naapurissa lähellä kyseistä kohtaa.
Se merkitsee myös sitä, että rungon lujuus (kuten painovoima) ja inertiaalivoimat eivät voi vaikuttaa materiaalin ominaisuuksiin.
Yksinkertaiset elastiset materiaalit ovat matemaattisia abstraktioita, eikä mikään todellinen materiaali sovi tähän määritelmään täydellisesti.
Monia käytännöllisiä kiinnostavia materiaaleja, kuten rautaa, muovia, puuta ja betonia, voidaan kuitenkin pitää yksinkertaisina elastisina materiaaleina stressianalyysitarkoituksiin..
Vaikka yksinkertaisten elastisten materiaalien kireys riippuu vain muodonmuutostilanteesta, jännitys / jännitys voi riippua muodonmuutosreitistä.
Siksi yksinkertaisella elastisella materiaalilla on ei-konservatiivinen rakenne ja jännitystä ei voida johtaa skaalattuun elastiseen potentiaalifunktioon. Tässä mielessä konservatiivisia materiaaleja kutsutaan hyperelasteiksi.
Hypoelastiset materiaalit
Nämä elastiset materiaalit ovat sellaisia, joilla on konstitutiivinen yhtälö, joka on riippumaton äärellisistä jännitysmittauksista, paitsi lineaarisessa tapauksessa.
Hypoelastiset materiaalimallit poikkeavat hyperelastisista materiaalimalleista tai yksinkertaisista elastisista materiaaleista, koska niitä ei voida johtaa muodonmuutosenergitiheysfunktiosta (FDED) lukuun ottamatta erityisiä olosuhteita..
Hypoelastista materiaalia voidaan tarkasti määritellä sellaiseksi, joka mallinnetaan käyttäen konstitutiivista yhtälöä, joka täyttää nämä kaksi kriteeriä:
- Kiristysjännite Ō aikaa T se riippuu vain siitä, missä järjestyksessä elin on käyttänyt aikaisempia kokoonpanojaan, mutta ei siinä vaiheessa, kun nämä aikaisemmat kokoonpanot olivat kulkeneet.
Erityistapauksessa tämä kriteeri sisältää yksinkertaisen elastisen materiaalin, jossa nykyinen jännitys riippuu vain nykyisestä kokoonpanosta menneiden kokoonpanojen historian sijasta.
- Toiminnallisella kiristimellä on arvo G niin että Ō = G (Ō, L) jossa Ō on materiaalin ja. \ t L on tilan nopeuden gradienttensori.
Hyperelastiset materiaalit
Näitä materiaaleja kutsutaan myös vihreiksi elastisiksi materiaaleiksi. Ne ovat eräänlainen konstitutiivinen yhtälö ihanteellisille elastisille materiaaleille, joiden jännityksen välinen suhde on johdettu muodonmuutosenergiatiheysfunktiosta. Nämä materiaalit ovat yksinkertaisia elastisia materiaaleja.
Monissa materiaaleissa lineaariset elastiset mallit eivät kuvaa oikein materiaalin havaittua käyttäytymistä.
Hyperrelastisuus tarjoaa keinon näiden materiaalien rasitus- ja venymiskäyttäytymisen mallinnukseen.
Tyhjien ja vulkanoitujen elastomeerien käyttäytyminen muodostaa usein hyperelastisen ideaalin. Täydelliset elastomeerit, polymeerivaahdot ja biologiset kudokset mallinnetaan myös hyperelastisella ideaalisoinnilla.
Hyperelastisten materiaalien malleja käytetään säännöllisesti edustamaan materiaalien suuren muodonmuutoksen käyttäytymistä.
Niitä käytetään yleensä mekaanisen käyttäytymisen ja tyhjien ja täytettyjen elastomeerien mallinnukseen.
Esimerkkejä elastisista materiaaleista
1 - luonnonkumia
2- Spandex tai lycra
3-butyylikumi (PIB)
4- Fluorielastomeeri
5- elastomeerit
6- etyleenipropyleenikumi (EPR)
7- Resilin
8- styreeni-butadieenikumi (SBR)
9 - Kloropreeni
10 - Elastiini
11 - Kumi-epikloorihydriini
12 - Nylon
13 - Terpeeni
14-isopreenikumi
15-poilbutadieeni
16 - Nitriilikumi
17 - Stretch-vinyyli
18 - Termoplastinen elastomeeri
19 - Silikonikumi
20 - Etyleeni-propyleeni-dieenikumi (EPDM)
21-etylinyyliasetaatti (EVA-kumi tai vaahtoava)
22- Halogenoitu butyylikumi (CIIR, BIIR)
23 - Neopreeni
viittaukset
- Elastisten materiaalien tyypit. Haettu osoitteesta leaf.tv.
- Cauchy-elastinen materiaali. Haettu osoitteesta wikipedia.org.
- Elastisten materiaalien esimerkit (2017) Palautettu quora.comista.
- Hyperelastisen materiaalin valitseminen (2017) Palautettu simscale.comista
- Hyperlestic materiaali. Haettu osoitteesta wikipedia.org.